Ligase Seven in Absentia Homologue Tumorigenesis by Targeting the Downstream E3 Ubiquitin Inhibition of RAS-Mediated Transformation and Updated Version
نویسندگان
چکیده
Constitutively active RAS small GTPases promote the genesis of human cancers. An important goal in cancer biology is to identify means of countervailing activated RAS signaling to reverse malignant transformation. Oncogenic K-RAS mutations are found in virtually all pancreatic adenocarcinomas, making the RAS pathway an ideal target for therapeutic intervention. How to best contravene hyperactivated RAS signaling has remained elusive in human pancreatic cancers. Guided by the Drosophila studies, we reasoned that a downstream mediator of RAS signals might be a suitable anti-RAS target. The E3 ubiquitin ligase seven in absentia (SINA) is an essential downstream component of the Drosophila RAS signal transduction pathway. Thus, we determined the roles of the conserved human homologues of SINA, SIAHs, in mammalian RAS signaling and RAS-mediated tumorigenesis. We report that similar to its Drosophila counterpart, human SIAH is also required for oncogenic RAS signaling in pancreatic cancer. Inhibiting SIAH-dependent proteolysis blocked RAS-mediated focus formation in fibroblasts and abolished the tumor growth of human pancreatic cancer cells in soft agar as well as in athymic nude mice. Given the high level of conservation of RAS and SIAH function, our study provides useful insights into altered proteolysis in the RAS pathway in tumor initiation, progression, and oncogenesis. By targeting SIAH, we have found a novel means to contravene oncogenic RAS signaling and block RAS-mediated transformation/tumorigenesis. Thus, SIAH may offer a novel therapeutic target to halt tumor growth and ameliorate RAS-mediated pancreatic cancer. [Cancer Res 2007;67(24):11798–810]
منابع مشابه
Inhibition of RAS-mediated transformation and tumorigenesis by targeting the downstream E3 ubiquitin ligase seven in absentia homologue.
Constitutively active RAS small GTPases promote the genesis of human cancers. An important goal in cancer biology is to identify means of countervailing activated RAS signaling to reverse malignant transformation. Oncogenic K-RAS mutations are found in virtually all pancreatic adenocarcinomas, making the RAS pathway an ideal target for therapeutic intervention. How to best contravene hyperactiv...
متن کاملEffect of disrupting seven-in-absentia homolog 2 function on lung cancer cell growth.
BACKGROUND Hyperactivated epidermal growth factor receptor (EGFR) and/or RAS signaling drives cellular transformation and tumorigenesis in human lung cancers, but agents that block activated EGFR and RAS signaling have not yet been demonstrated to substantially extend patients' lives. The human homolog of Drosophila seven-in-absentia--SIAH-1 and SIAH-2--are ubiquitin E3 ligases and conserved do...
متن کاملp53 governs telomere regulation feedback too, via TRF2
p53 takes critical part in a number of positive and negative feedback loops to regulate carcinogenesis, aging and other biological processes. Uncapped or dysfunctional telomeres are an endogenous DNA damage that activates ATM kinase (ataxia telangiectasia mutated) and then p53 to induce cellular senescence or apoptosis. Our recent study shows that p53, a downstream effector of the telomere dama...
متن کاملSiah proteins: novel drug targets in the Ras and hypoxia pathways.
The Siah (seven in absentia homolog) family of RING-domain proteins are components of ubiquitin ligase complexes, targeting proteins for proteasomal degradation. Siah family members have been reported to function in Ras, estrogen, DNA-damage, and hypoxia response pathways. Although earlier reports implicated Siah proteins as tumor suppressors, recent studies in mouse models have shown that Siah...
متن کاملmiR-135A Regulates Preimplantation Embryo Development through Down-Regulation of E3 Ubiquitin Ligase Seven in Absentia Homolog 1A (SIAH1A) Expression
BACKGROUND MicroRNAs (miRNAs) are small non-coding RNA molecules capable of regulating transcription and translation. Previously, a cluster of miRNAs that are specifically expressed in mouse zygotes but not in oocytes or other preimplantation stages embryos are identified by multiplex real-time polymerase chain reaction-based miRNA profiling. The functional role of one of these zygote-specific ...
متن کامل